你好,游客 登录 注册
背景:
阅读新闻

Python教程之绘制Mandelbrot集合

[日期:2019-05-01] 来源:Linux社区  作者:shandianke [字体: ]
一. 分形与混沌
 
自然界的很多事物,如树木、云彩、山脉、雪花、海岸线等,都呈现出传统几何学所不能描述的形状,这些形状都有如下的特性:
  • 有着十分精细的不规则结构
  • 整体与局部相似
分形与混沌的关系密切,多是以自组织系统为其研究对象,而含义又各不相同。自组织现象常常是时空有序的结构,是复杂的系统,用传统的简化方法无法解决。分形几何学就是用来研究这样一类几何形状的科学,混沌中有时包容着分形,而分形有时又孕育着混沌。分形更注重形态或几何特性、图形的描述;混沌更偏重数理的动力学及动力学与图形结合的多方位的描述和研究。分形更看重有自相似性的系统,而混沌涉及面似乎更广,对所有的有序与无序、有序与有序现象都感兴趣。
 
二. Mandelbrot集合
        Mandelbrot(曼德布洛特)集合是在复平面上组成分形的点的集合。Mandelbrot集合可以用下面的复二次多项式定义:
其中c是一个复数。对于每一个c,从z=0开始对函数进行迭代。序列的值或者延伸到无限大,或者只停留在有限半径的圆盘内。Mandelbrot集合就是使以上序列不发散的所有c点的集合。用程序绘制Mandelbrot集合时不能进行无限次迭代,最简单的方法是使用逃逸时间(迭代次数)进行绘制,具体算法如下:
  • 判断每次调用函数得到的结果是否在半径R之内,即复数的模小于R
  • 记录下模大于R时的迭代次数
  • 迭代最多进行N次
  • 不同的迭代次数的点使用不同的颜色绘制
三. Mandelbrot程序
import numpy as np
import pylab as pl
import time
from matplotlib import cm
def iter_point(c):
    z=c
    for i in range(1,100):
        if abs(z)>3: break
        z=z*z+c
    return i
def draw_mandelbrot(cx,cy,d):
    x0,x1,y0,y1=cx-d,cx+d,cy-d,cy+d
    y,x=np.ogrid[y0:y1:200j,x0:x1:200j]
    c=x+y*1j
    start=time.clock()
    mandelbrot=np.frompyfunc(iter_point,1,1)(c).astype(np.float)
    print ("time="),time.clock()-start
    pl.imshow(mandelbrot,cmap=cm.Blues_r,extent=[x0,x1,y0,y1])
    pl.gca().set_axis_off() 
x,y=0.27322626,0.595153338 
pl.subplot(231)
draw_mandelbrot(-0.6,0,1.5)
for i in range(2,7):
    pl.subplot(230+i)
    draw_mandelbrot(x,y,0.2**(i-1))
pl.subplots_adjust(0.02,0,0.88,1,0.01,0)
pl.show()

运行效果如下图:

Python教程之绘制Mandelbrot集合

更多Python相关信息见Python 专题页面 https://www.91linux.com/topicnews.aspx?tid=17 

Linux开源中文网的RSS地址https://www.91linux.com/rssFeed.aspx

本文永久更新链接地址https://www.91linux.com/Linux/2019-05/158412.htm

linux
相关资讯       Mandelbrot  Mandelbrot集合 
本文评论   查看全部评论 (0)
表情: 表情 姓名: 字数

       

评论声明
  • 尊重网上道德,遵守中华人民共和国的各项有关法律法规
  • 承担一切因您的行为而直接或间接导致的民事或刑事法律责任
  • 本站管理人员有权保留或删除其管辖留言中的任意内容
  • 本站有权在网站内转载或引用您的评论
  • 参与本评论即表明您已经阅读并接受上述条款